什么是奇函数(怎么判断奇偶性函数)
温馨提示:这篇文章已超过336天没有更新,请注意相关的内容是否还可用!
奇函数为什么叫做奇函数
在数学中,奇函数是指满足以下条件的函数:
1.如果对于函数的定义域中的任何实数(x),都有f(-x)=-f(x),即函数的函数值关于原点对称。
由于奇函数具有这种关于原点的对称性质,因此被称为“奇函数”。这里的“奇”一词是指函数关于原点对称的特性,与“偶”函数相对应。偶函数是指满足以下条件的函数:
1.如果对于函数的定义域中的任何实数(x),都有(f(-x)=f(x)),即函数的函数值关于原点对称。

奇函数和偶函数是函数的两种基本对称性质,它们在数学中具有重要的作用。
奇函数定义
奇函数是指在定义域上满足函数值对于自变量关于原点对称的函数。即对于所有$x$,都有$f(-x)=-f(x)$。这个定义可以具体理解为,当自变量为正时,函数值与自变量为负时相反,如正弦函数$sin(x)$就是一个奇函数。奇函数具有许多特殊性质,如在对称轴处为$0$等。
奇函数和偶函数的定义是什么
奇函数是在坐标图上关于原点对称的函数。偶函数则是关于y轴对称的函数。奇函数和偶函数是初中数学学习的重要内容之一。举个例子,如果奇函数上有一个坐标点(2,2),对称点有(-2,-2)。偶函数两个对称的点则是(2,2)和(-2,2)。
两个函数对称方式不同,图形也不同。
什么叫奇函数
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
奇函数性质
1、在奇函数f(x)中,f(x)和f(-x)的符号相反且绝对值相等,即f(-x)=-f(x),反之,满足f(-x)=-f(x)的函数y=f(x)一定是奇函数。例如:f(x)=x^(2n-1),n∈Z;(f(x)等于x的2n-1次方,n属于整数)
2、奇函数图象关于原点(0,0)中心对称。
3、奇函数的定义域必须关于原点(0,0)对称,否则不能成为奇函数。
奇函数的定义
1,奇函数是指,函数曲线在坐标轴上关于原点对称的函数。比如,在奇函数上面有一个坐标是1.1,那么它的横坐标和纵坐标都关于原点对称,则必然有一个点的坐标为-1.-1。
2,偶函数是指函数曲线在坐标轴关于Y轴对称的函数。比如在偶函数上有一个坐标是1.1,那么它的横坐标关于Y轴对称,则必然有一个点的坐标为-1.1。
网站文章、图片来源于网络,以不营利的目的分享经验知识,版权归原作者所有。如有侵权请联系删除!
还没有评论,来说两句吧...