大数据的含义?大数据的概念及应用
温馨提示:这篇文章已超过344天没有更新,请注意相关的内容是否还可用!
大数据的含义包括哪些
大数据是指那些数据量特别大、数据类别特别复杂的数据集,这种数据集不能用传统的数据库进行转存、管理和处理,是需要新处理模式才能具有更强大的决策力、洞察发现力和流程优化能力的海量、高增差率和多样化的信息资产。
而大数据的主要特点就是数据量大、数据处理速度快、数据真实性高、数据类别复杂等,它们合起来被称为4V。
大数据也可以应用在警察预测犯罪的发生、预测选举结果,同时还能通过手机定位数据和交通数据建立城市规划,现在医疗行业也在做大数据的分析。
现在社会发展速度非常快,科技也很发达,信息的流通和人们之间的交流也非常密切,而大数据就是这个时代高科技的产物。

对于大部分行业而言,怎么运用这些大规模数据是赢得竞争的关键,但同时,大数据在经济发展中的意义不能取代一切对于社会问题的理性思考。
现在大数据行业非常的受欢迎,人才需要求量也非常大,而且企业给大数据工程师的薪资比一般工程师的薪资也要高很多。
匿名用户
大数据的含义包括大科学、RFID、感测设备网络、天文学、大气学、基因组学、生物学、大社会数据分析、互联网文件处理、制作互联网搜索引擎索引、通信记录明细、军事侦查、社交网络、通勤时间预测、医疗记录、照片图像和视频封存、大规模的电子商务等。
大数据概念包含:
1.数据量大,TB,PB,乃至EB等数据量的数据需要分析处理;
2.要求快速响应,市场变化快,要求能及时快速的响应变化,那对数据的分析也要快速,在性能上有更高要求,所以数据量显得对速度要求有些“大”;
3.数据多样性:不同的数据源,非结构化数据越来越多,需要进行清洗,整理,筛选等操作,变为结构数据;
4.价值密度低,由于数据采集的不及时,数据样本不全面,数据可能不连续等等,数据可能会失真,但当数据量达到一定规模,可以通过更多的数据达到更真实全面的反馈。
很多行业都会有大数据需求,譬如电信行业,互联网行业等等容易产生大量数据的行业,很多传统行业,譬如医药,教育,采矿,电力等等任何行业,都会有大数据需求。
大数据的含义和作用是什么
大数据简单说就是现实世界数据化!
而大数据对于个人的意义就是:个人与信息的强结合,个人自带可信的信息。
就拿健康码来说,为什么绿码就能放行?为什么各个检查口看到绿码就放行?因为绿码是携带了个人安全的健康信息,表示这个人是低风险的。
换句话说,健康码是个人信息的一部分,而且是可信的。
健康码的存在,是基于大数据的。我们人会休息,但是手机不会休息,于是我们的位置信息随时随地被记录下来,形成一个个人的行动路径。我们有没有经过高风险地区,甚至可以划分到社区和小区。通过收集类似的个人大量数据,最终形成了一个绿色的健康码。以证明我们是安全的,我们没有携带病毒。
早期互联网,人和信息是分开的。电脑是固定在一个个地方,我们只能收集到ip,个人账户信息。地理位置只能通过ip来推测,那个时代,广告的精准推送是非常难的。只能根据地区来推送。
而现在,智能手机的大量普及,不可避免的,我们通过各种“用户协议”开始暴露我们的个人数据,去了哪里,买了什么东西,和谁是朋友和一些基本信息,性别,年龄等等。
于是,大数据算法可以推算出,我们的行动路径,我们的爱好,活跃时间,喜欢什么app,喜欢什么文章。最终逐渐的,我们数据个人形象越来越逼近真实的我们。
而健康码的出现,几乎就是一个正面的证明,说明我们的个人数据形象和真实的我们已经几乎等同了。
这就是大数据时代,我们逐渐在变得越来越透明,越来越数据化。
数据就是我们,我们就是数据!
什么是“数据新闻”
数据新闻(datanews),又叫数据驱动新闻。是指基于数据的抓取、挖掘、统计、分析和可视化呈现的新型新闻报道方式。数据新闻是在大数据的技术背景下产生的。数据新闻是随着数据时代的到来出现的一种新型报道形态,是数据技术对新闻业全面渗透的必然结果,它的出现在一定程度上改变了传统新闻生产流程。
功能与优势:目前,在大数据新闻制作上已经积累了经验的国际媒体有《卫报》《纽约时报》《华盛顿邮报》等,但它们也处于探索阶段。通过对国内外代表性媒体的大数据新闻实践进行研究,可以总结出大数据新闻的四个功能,即描述、判断、预测、信息定制。
数据新闻的特征:
1、以服务公众利益为目的;
2、以公开的数据为基础;
3、依靠特殊的软件程序对数据进行处理,开掘隐藏在宏观、抽象数据背后的新闻故事;
4、以形象互动的可视化的方式呈现新闻。
什么是农业大数据
农业大数据到底是什么鬼?
相信许多人都有这个疑问。简而言之,一切与农业相关的数据,包括上游的种子、化肥和农药等农资研发,气象、环境、土地、土壤、作物、农资投入等种植过程数据,以及下游的农产品加工、市场经营、物流、农业金融等数据,都属于农业大数据的范畴,贯穿整个产业链。农业大数据之所以大而复杂,是由于农业是带有时间属性和空间属性的行业,因而需要考虑多种因素在不同时间点和不同地域对农业的影响。
大数据在农业中有哪些应用?1.大数据加速作物育种
传统的育种成本往往较高,工作量大,需要花费十年甚至更久的时间。而大数据加快了此进程。生物信息爆炸促使基因组织学研究实现突破性进展。首先,获得了模式生物的基因组排序;其次,实验型技术可以被快速应用。
过去的生物调查习惯于在温室和田地进行,现在已经可以通过计算机运算进行,海量的基因信息流可以在云端被创造和分析,同时进行假设验证、试验规划、定义和开发。在此之后,只需要有相对很少一部份作物经过一系列的实际大田环境验证。这样一来育种家就可以高效确定品种的适宜区域和抗性表现。这项新技术的发展不仅有助于更低成本更快的决策,而且能探索很多以前无法完成的事。
传统的生物工程工具已经研究出具有抗旱、抗药、抗除草剂的作物。通过持续发展,将进一步提高作物质量、减少经济成本和环境风险。作物开发出的新产品将有利于农民和消费者,例如高钙胡萝卜、抗氧化剂番茄、抗敏坚果、抗菌橙子、节水型小麦、含多种营养物质的木薯等。
2.以数据驱动的精准农业操作
农业很复杂,作物、土壤、气候以及人类活动等各种要素相互影响。在近几年,种植者通过选取不同作物品种、生产投入量和环境,在上百个农田、土壤和气候条件下进行田间小区试验,就能将作物品种与地块进行精准匹配。
如何获得环境和农业数据?通过遥感卫星和无人机可以管理地块和规划作物种植适宜区,预测气候、自然灾害、病虫害、土壤墒情等环境因素,监测作物长势,指导灌溉和施肥,预估产量。随着GPS导航能力和其他工业技术的提高,生产者们可以跟踪作物流动,引导和控制设备,监控农田环境,精细化管理整个土地的投入,大大提高了生产力和盈利能力。
数据快速积累的同时,如果没有大数据分析技术,数据将会变得十分庞大和复杂。数据本身并不能创造价值,只有通过有效分析,才能帮助种植者做出有效决策。曾在美国航空航天局从事多年遥感数据分析的张弓博士指出,“大数据分析的技术核心是机器学习,快速、智能化、定制化地帮助用户获取数据,获得分析结果,进而做出种植决策,提高设施和人员使用效率。机器学习的另一个好处是,随着数据不断积累,分析算法将更准确,帮助农场做出更准确的决策。”张弓博士2016年回国成立佳格数据,致力于通过遥感获取农业数据,帮助客户“知天而作”,利用气象、环境等数据来支持农业种植及上下游的决策。
3.大数据实现农产品可追溯
跟踪农产品从农田到顾客的过程有利于防止疾病、减少污染和增加收益。当全球供应链越来越长,跟踪和监测农产品的重要性也越来越强。大数据可以在仓库储存和零售商店环节提高运营质量。食品生产商和运输商使用传感技术、扫描仪和分析技术来监测和收集产业链数据。在运输途中,通过带有GPS功能的传感器实时监测温度和湿度,当不符合要求时会发出预警,从而加以校正。
销售点扫描能够在有问题或者需要召回食品,甚至在产品卖出后也可以采取即时、高效的应对措施。基因组工具和大数据分析技术也被用于发现食物为传播载体的病菌传播规律,进而预测爆发期。此类病菌的威力不可小觑,据调查,仅在美国每年就造成7600万人口感染,5000人死亡。同时,大数据可以减少产业链过程中的浪费现象,在发达国家市场中40%的食物都被丢弃,其中包括10%-15%的农产品。
4.大数据重组供应链
许多传统、安于现状的公司不能及时通过新技术来做出改变,因为快速变化需要公司文化、风格和运营方式给予支持。大型农业企业拥有大量的研发经费和机制,促使他们较容易地运用复杂技术开发出新产品。另外,对大部分公司的另一个挑战是复杂的定价策略不断演化,涉及层层分销商、经销商、打包销售、返利折让等一系列过程,造成产业链过程中价格不透明。谁能掌握此先机,谁就掌握了市场的主动权。
然而,正是有这些问题的存在,才给改变带来更多机会,就像谷歌改变了多个产业,而打车软件改变了人们的出行方式。
大数据是什么计算的
怎么计算的?用于计算什么的?问题描述不是很清楚。
大数据最早可以追溯到Google提出的MapReduce计算方式,Apache通过Hadoop实现了一个基于MapReduce算法的实现,主要用于大规模数据的处理。它与传统的并行计算有很大的不同,传统的并行计算主要利用的是单台服务器的性能,通过不断的扩展服务器的硬件资源来提高运算效率。而MapReduce主要就是利用多台机器甚至可以是废弃的机器组成集群来将任务分配在不同节点上同时进行运算,以此来提高运算效率。
由于性能方面可以通过不断的扩充节点而得到提升,因此使用成本、扩展性方面都比传统的并行计算要出色得多。
其运算过程如下图:
整个过程可以分成两步:
第一步:Map,将整个计算过程细分,典型的如基因序列比对算法,需要从基因库中查找到匹配的基因;在Map这一步中,会将查找的库中的基因进行细分,每个节点分配一个指定数目的基础序列;然后在每个节点上同时进行序列比较;每个节点上会出来一个比对结果。
第二步:Reduce,将每个节点运算的结果进行汇总,最终返回给调用方。
基于这种原理,再加上目前互联网产生的数据量越来越大,而传统的并行计算所需的硬件资源过于昂贵,因此Hadoop的应用已经越来越广泛。它可以用于文件存储,也可以用于替换传统的数据库来进行数据的收集与统计,也可以用于日志存储分析等方面。
网站文章、图片来源于网络,以不营利的目的分享经验知识,版权归原作者所有。如有侵权请联系删除!
还没有评论,来说两句吧...