正交矩阵是什么?正交矩阵有何特点

博主:亿勤网亿勤网 2024-06-11 40 0条评论

温馨提示:这篇文章已超过380天没有更新,请注意相关的内容是否还可用!

矩阵相互正交是什么意思

矩阵相互正交是两个向量正交,两个向量正交是指它们的内积等于零,两个向量的内积是它们对应分量的乘积之和。几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。在三维向量空间中,两个向量的内积如果是零,那么就说这两个向量是正交的。正交最早出现于三维空间中的向量分析。换句话说,两个向量正交意味着它们是相互垂直的。若向量α与β正交,则记为α⊥β。扩展资料:

1、方阵A正交的充要条件是A的行(列)向量组是单位正交向量组;

2、方阵A正交的充要条件是A的n个行(列)向量是n维向量空间的一组标准正交基;

3、A是正交矩阵的充要条件是:A的行向量组两两正交且都是单位向量;

正交矩阵是什么?正交矩阵有何特点

4、A的列向量组也是正交单位向量组;

5、正交方阵是欧氏空间中标准正交基到标准正交基的过渡矩阵。

什么叫正交矩阵

正交矩阵是方块矩阵,行向量和列向量皆为正交的单位向量。

如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵。正交矩阵是实数特殊化的酉矩阵,因此总是属于正规矩阵。尽管我们在这里只考虑实数矩阵,但这个定义可用于其元素来自任何域的矩阵。

正交矩阵毕竟是从内积自然引出的,所以对于复数的矩阵这导致了归一要求。正交矩阵不一定是实矩阵。实正交矩阵(即该正交矩阵中所有元都是实数)可以看做是一种特殊的酉矩阵,但也存在一种复正交矩阵,这种复正交矩阵不是酉矩阵。

扩展资料

定理:在矩阵论中,实数正交矩阵是方块矩阵Q,它的转置矩阵是它的逆矩阵,如果正交矩阵的行列式为+1,则称之为特殊正交矩阵。

方阵A正交的充要条件是A的行(列)向量组是单位正交向量组。

方阵A正交的充要条件是A的n个行(列)向量是n维向量空间的一组标准正交基。

A是正交矩阵的充要条件是:A的行向量组两两正交且都是单位向量。

A的列向量组也是正交单位向量组。

正交方阵是欧氏空间中标准正交基到标准正交基的过渡矩阵。

正交矩阵的性质有哪些

如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵。正交矩阵是实数特殊化的酉矩阵,因此总是属于正规矩阵。

正交矩阵的性质

1、逆也是正交阵

对于一个正交矩阵来说,它的逆矩阵同样也是正交矩阵。

2、积也是正交阵

如果两个矩阵均为正交矩阵,那么它们的乘积也是正交矩阵。

3、行列式的值为正1或负1

任何正交矩阵的行列式是+1或1对于置换矩阵,行列式是+1还是1匹配置换是偶还是奇的标志,行列式是行的交替函数。

4、在复数上可以对角化

比行列式限制更强的是正交矩阵总可以是在复数上可对角化来展示特征值的完全的集合,它们全都必须有(复数)绝对值1。

正交矩阵的形式

正交矩阵是一种特殊的矩阵,其行向量和列向量都是单位向量,且行向量之间、列向量之间都正交。也就是说,对于正交矩阵,其转置矩阵与逆矩阵相等。在形式上,如果Q是正交矩阵,那么Q的转置矩阵Q^T等于其逆矩阵Q^(-1)。正交矩阵通常用单位矩阵加上一个副对角线上的元素不为0的矩阵来表示。具体来说,一个n阶正交矩阵可以表示为:Q=I+c*(e+e^T)/2其中,I是单位矩阵,c是非零常数,e是第(1,2)位置为1,其余位置为0的2阶矩阵,e^T是e的转置矩阵。正交矩阵具有一些重要的性质,例如其行列式值等于1或-1,其特征值也是1或-1。此外,正交矩阵还可以用来表示旋转和反射等线性变换。

何谓正交矩阵它有哪些性质

如果:AA'=E(E为单位矩阵,A'表示“矩阵A的转置”。)则n阶实矩阵A称为正交矩阵性质:

1.方阵A正交的充要条件是A的行(列)向量组是单位正交向量组;

2.方阵A正交的充要条件是A的n个行(列)向量是n维向量空间的一组标准正交基;

3.A是正交矩阵的充要条件是:A的行向量组两两正交且都是单位向量;

4.A的列向量组也是正交单位向量组。

The End

网站文章、图片来源于网络,以不营利的目的分享经验知识,版权归原作者所有。如有侵权请联系删除!