什么叫方差 方差的概念和定义
温馨提示:这篇文章已超过391天没有更新,请注意相关的内容是否还可用!
方差什么意思
方差(Variance),应用数学里的专有名词。在概率论和统计学中,一个随机变量的方差描述的是它的离散程度,也就是该变量离其期望值的距离。一个实随机变量的方差也称为它的二阶矩或二阶中心动差,恰巧也是它的二阶累积量。方差的算术平方根称为该随机变量的标准差。
标准差又称均方差,一般用σ表示。方差和标准差的计算也分为简单平均法和加权平均法。
什么是方差
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。如(1,2,3,4,5)这组数据的方差dao,就先求出这组数据的平均数(1+2+3+4+5)÷5=3,然后再求各个数与平均数的差的平方和,用(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2=10,再求平均数10÷5=2,即这组数据的方差为2。
扩展资料

方差的概念与计算公式,例如两人的5次测验成绩如下:X:50,100,100,60,50,平均值E(X)=72;Y:73,70,75,72,70平均值E(Y)=72。平均成绩相同,但X不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。单个偏离是消除符号影响方差即偏离平方的均值,记为E(X):直接计算公式分离散型和连续型。推导另一种计算公式得到:“方差等于各个数据与其算术平均数的离差平方和的平均数”。
什么叫做方差
方差是统计学中一种重要的概念,是对数据离散程度的度量。具体来说,方差是每个数据点与整体均值的差值的平方和的平均值。一般来说,方差越大表示数据点之间的差异越大,反之,则表示数据更为集中。因为方差可以帮助我们分析数据的分散情况,所以在实际应用中被广泛地使用,如商业分析、财务报告、科学研究等领域。
同时,方差也是许多重要统计概念的基础,比如标准差和相关性等。
方差是什么
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。
当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。
样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。
方差是什么意思
方差(Variance),应用数学里的专有名词。在概率论和统计学中,一个随机变量的方差描述的是它的离散程度,也就是该变量离其期望值的距离。一个实随机变量的方差也称为它的二阶矩或二阶中心动差,恰巧也是它的二阶累积量。方差的算术平方根称为该随机变量的标准差。
标准差又称均方差,一般用σ表示。方差和标准差的计算也分为简单平均法和加权平均法。
网站文章、图片来源于网络,以不营利的目的分享经验知识,版权归原作者所有。如有侵权请联系删除!
还没有评论,来说两句吧...